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Abstract

Some level of renal dysfunction is common in patients with cancer. This could be a result of an age-related kidney function decrease,
the underlying disease (eg, multiple myeloma), or the effects of nephrotoxic medications. Some intravenous (I.V.) bisphosphonates
have been associated with occasional renal toxicity in the clinical setting. Therefore, the choice of an I.V. bisphosphonate should take
into account the risk of renal deterioration. Preclinical studies also suggest that there might be considerable differences between the
renal safety profiles of commonly used I.V. bisphosphonates. Variations in the risk of histopathologic damage and the ability to cause
cumulative toxicity have been observed in comparative preclinical studies of I.V. bisphosphonates. The reasons for these apparent
differences are not fully understood. Research shows that renal safety profiles might be influenced by pharmacokinetic properties, such
as renal tissue half-life, protein binding, and intracellular potency. Preclinical analyses are warranted in order to confirm and evaluate
these differences between bisphosphonates.
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Introduction
As effective inhibitors of osteoclast-mediated bone resorp-

tion, bisphosphonates target the pathophysiology of metasta-
tic bone disease.1,2 The deterioration of renal function asso-
ciated with the use of intravenous (I.V.) bisphosphonates in
patients with metastatic bone disease has been widely report-
ed and represents a significant safety issue. Although bispho-
sphonates share the kidney as the primary systemic target in
animal toxicity studies, the renal effects caused by individual
bisphosphonates are not uniform.3 They differ with respect
to dose relationship, structural target within the kidney,
renal tissue half-life, and possibly intracellular mode of
action. These differences translate into different renal safety

profiles. For clinical use, the risk of nephrotoxicity has to be
assessed separately for each bisphosphonate in specific clini-
cal situations (according to dose, treatment regimen, target
population, etc). The chemical structures of different bispho-
sphonates are shown in Figure 1.

For the majority of agents, 40%-60% of bisphosphonates
reaching the systemic circulation is rapidly bound to bone.4
The skeleton acts as a sink, explaining the rapid disappear-
ance of bisphosphonates from the blood and why the appar-
ent total plasma clearance is much higher than the renal
clearance, which is actually similar to creatinine clearance.5
Skeletal uptake is a function of the number of bone metas-
tases and the degree of bone turnover.6 The remaining
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unbound bisphosphonate is eliminated, unchanged through
the kidneys by filtration and by active tubular secretion.7,8

High molar concentrations of some bisphosphonates after
large doses and/or rapid administration have been shown to
overload the mechanism for renal elimination, and the
remaining compound can damage renal cells. For example,
the net renal secretion and high concentration of bisphos-
phonates in tubular cells were linked to proteinuria and prox-
imal tubular necrosis after a 5-mg/kg9 parenteral dose of
pamidronate and a 200-mg/kg dose of clodronate (doses 5- to
20-times higher than clinical doses in humans).10,11

Acute renal toxicity has been reported after treatment with
overdoses of rapidly infused non–nitrogen-containing bisphos-
phonates (etidronate and clodronate).12,13 Highly potent nitro-
gen-containing bisphosphonates have been shown to be effec-

Figure 1

Chemical Structures of Bisphosphonates
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Figure 2

Kidney Sections After Bisphosphonate Dosing35,36

A

B

Kidney sections after (A) a single dose of ibandronate (3 mg/kg) showing degenerative PCT 
changes, intact distal tubules, and P3 sections; (B) a 10-mg/kg dose of zoledronic acid showing 
degeneration of the PCT, cytoplasmic granules, and intraluminal proteinaceious material.
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tive at lower molar concentrations of the drug.14,15 However,
deteriorated renal function in patients with metastatic bone dis-
ease has been linked to high doses and recommended clinical
doses of pamidronate and zoledronic acid.16-25

The exact mechanism of bisphosphonate-induced renal tox-
icity is unknown. One hypothesis suggests that precipitation
of bisphosphonate aggregates or complexes in the kidney
might contribute to renal toxicity.26,27 Alternatively, it was
proposed that the same intracellular effects described for
osteoclasts could also cause renal cellular injury, leading to
apoptosis.22 Newer nitrogen-containing bisphosphonates,
such as zoledronic acid, alendronate, risedronate, and iban-
dronate, inhibit the mevalonate pathway through the farnesyl
pyrophosphate synthetase required for protein prenylation of
small guanosine triphosphatases (GTPases).28,29 Lipid prenyl
groups anchor the GTPases in cell membranes and ensure
their correct interaction and function in a variety of cellular
processes (integrin signaling, endosomal trafficking, mem-
brane ruffling, and apoptosis).28,30-33 These common mecha-
nisms of action might somehow influence the interaction
between bisphosphonates and the kidney.

Nephrotoxic hypotheses that focus on class effects of bispho-
sphonates exclude different renal effects in animal models or
patients with metastatic bone disease, regardless of the drug,
yet preclinical and histopathologic evidence suggest that the
effect of individual bisphosphonates on the kidney varies.

Site of Renal Damage
Histopathologic studies in clinically relevant rat models

can identify and categorize subclinical renal damage that
might otherwise be undetected using conventional measures
of renal functioning, such as serum creatinine.34-36 Research
showed tubular degeneration on day 4, when the acute
nephrotoxicity of ibandronate (1-20 mg/kg in a single I.V.
injection), zoledronic acid (3-10 mg/kg in a single I.V. injec-
tion), and clodronate (200-mg/kg twice-daily intraperitoneal
injections) were compared in rats.35,36 The severity of degen-
erative changes in the proximal convoluted tubule (PCT) was
dose-dependent for ibandronate and zoledronic acid.
However, the dose-effect relationship was stronger for zole-
dronic acid than ibandronate. Acute treatment with bispho-
sphonates was well tolerated with a 10-mg/kg dose of iban-
dronate and a 3-mg/kg dose of zoledronic acid. The absence
of drug precipitation in the kidney, even at the highest doses,
suggested that the tubular damage might be caused by the
interaction of bisphosphonates with PCT epithelial cells,
which might have the same molecular targets as osteoclasts.
Although degeneration and single-cell necrosis of the PCT
were characteristic common findings, there were qualitative
differences in localization and type of lesion between bispho-
sphonates (Figure 2).35,36 Lesions induced by ibandronate
and clodronate were locally restricted to the P1 and P2 seg-

ments of the PCT; zoledronic acid also induced changes in
the outer medulla, P3 segments of the tubules, and distal
tubules at the highest dose (10 mg/kg). 

Analysis of renal tissue from patients after bisphosphonate-
related acute renal toxicity has also shown pathologic differ-
ences between the effects of zoledronic acid and pamidronate.
Several publications report collapsing glomerulonephritis
(a form of focal segmental glomerulosclerosis) during
pamidronate therapy, particularly at high doses (> 90 mg and
≥ 360 mg per month).21,22,25,37-39 Renal complications after
zoledronic acid have been shown in patients receiving the
recommended 4-mg dose once a month.23,40 All patients in
cohort 6 reported by Markowitz et al were diagnosed with
acute tubular necrosis without glomerular injury.23

Accumulative Renal Effects
Preclinical evidence suggests the renal safety of single bis-

phosphonate doses does not necessarily predict long-term
effects of repeated-interval doses. In a controlled 25-week
study, Pfister and colleagues investigated the risk of subclin-
ical renal damage potentially accumulating to clinically rele-
vant levels after intermittent dosing of ibandronate and zole-
dronic acid in rats.34 To mimic hypothetically occurring sub-
clinical renal effects in patients, minimally nephrotoxic doses
(MND; ie, those that were high enough to induce subclinical
renal damage after a single I.V. administration) for both bis-
phosphonates were used. Initial dose-selection experiments
showed that the MND for ibandronate and zoledronic acid in

Figure 3

Histopathologic Findings in the Kidney After 
Single or Intermittent Dosing of Ibandronate 
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rats were 1 mg/kg and 3 mg/kg, respectively (a 1-mg/kg
dose of zoledronic acid was also tested to allow equivalent
dose comparisons with ibandronate when both agents were
given intermittently). In addition to single-dose administra-
tion, doses were given at a clinically relevant between-dose
interval of 3 weeks for 6 months (a total of 9 administra-
tions), and nephrotoxicity was assessed by serum biochem-
istry, urinalysis, and kidney histopathology. 

The results showed minimal renal damage during single
or intermittent dosing of ibandronate (1 mg/kg); and
histopathologic renal changes were similar in severity and
incidence between ibandronate groups. In contrast, degener-
ation and single-cell necroses of the PCT were observed after
intermittent dosing of a 1-mg/kg dose of zoledronic acid,
whereas a single I.V. injection showed minimal PCT dam-
age. Intermittent 3-mg/kg dosing of zoledronic acid
resulted in a greater severity and incidence of PCT findings
compared with a single dose. Besides the PCT damage
demonstrated with a single dose, repeated administration
of a 3-mg/kg dose of zoledronic acid produced additional
renal damage to the outer medulla and tubular atrophy of
the cortex (Figure 3).34

Investigators concluded that zoledronic acid had a higher
risk of causing accumulated renal damage over time than
ibandronate in this rat model. The results indicate that dos-
ing every 3 weeks provided sufficient time for repair of possi-
ble subclinical renal damage for ibandronate but apparently
not for zoledronic acid. Because the risk of cumulative renal
effects is most likely related to residual tissue concentration
(the amount of bisphosphonate remaining in the kidney from
the previous doses), the absence of toxic accumulation with
ibandronate might be explained by its shorter renal tissue
half-life (24 days) versus zoledronic acid (150-200
days).4,41,42 Standard dosing of an I.V. 6-mg dose of iban-
dronate every 3 to 4 weeks for 96 weeks had a renal safety
profile comparable with placebo in phase III trials of
patients with breast cancer and bone metastases.43-45

Dose-Effect Relationship
The ratio between the lowest lethal dose of ibandronate

(25 mg/kg), zoledronic acid (10 mg/kg), and their MND
(1 mg/kg and 3 mg/kg, respectively) was 25 for ibandronate
but only 3.3 for zoledronic acid in the rat model of single I.V.
bisphosphonate dosing.34,42 Data suggest the therapeutic
window of ibandronate (the range between lowest effective
dose and highest dose that can be used without causing renal
toxicity) is particularly broad. In addition, ibandronate load-
ing doses (4-mg infused dose on 4 consecutive days, with a
16-mg total dose or 6-mg infused dose on 3 consecutive days,
with an 18-mg total dose followed by intermittent dosing
every 3 to 4 weeks) have been used in pilot studies to treat
moderate-to-severe metastatic bone pain without adverse

renal effects.46-48 The results, however, must be confirmed in
randomized, controlled studies. Phase III trials of loading-
dose ibandronate followed by oral or I.V. standard dosing for
patients with metastatic bone pain (comparator: standard
zoledronic acid dosing) are planned.

Renal Tissue Kinetics
The mechanism of nephrotoxicity caused by bisphosphonates

is related to intracellular effects in tubular cells. Differences in
renal tissue kinetics are therefore key determinants of differ-
ences in clinical renal safety profiles between bisphosphonates.
This includes the influx of bisphosphonate into the target cells,
their persistence and intracellular transport, as well as the elim-
ination rate from the cell (this defines the renal tissue half-life
discussed earlier). Uptake and secretion from renal cells appear
to be rate-determining and are controlled by unknown trans-
port mechanisms that are selective for bisphosphonates.49-52

Kino et al showed that when the plasma concentration increas-
es, cellular influx of alendronate remains almost constant,
whereas secretion from the cell is almost completely saturat-
ed.49 This suggests that dose and peak plasma concentration
affect the intracellular concentration of bisphosphonates and
consequently the risk of cellular damage. This is most likely the
reason why nephrotoxicity is not an issue for oral bisphospho-
nates, which are absorbed relatively slowly and are therefore
administered as high daily doses compared with the lower
monthly doses of I.V. bisphosphonates. 

The protein-binding rate of bisphosphonates is another factor
that might influence the propensity of bisphosphonates to cause
renal damage. Because only non–protein-bound bisphospho-
nates can be taken up by the tubule cells, a high level of protein
binding might limit or at least delay the entry and reduce the
risk of accumulative renal damage. The protein-binding rate of
ibandronate in patients is approximately 85% compared with
22% for zoledronic acid.53,54 The intracellular bisphosphonate
is eliminated by the active tubular secretion. The relevance of
protein binding in the clinical setting remains highly specula-
tive however, and further investigation is required. 

Having a relatively long renal tissue half-life might help
explain why some patients develop renal dysfunction when
treated with the recommended zoledronic acid dosing regi-
men of 4-mg infusions every 3 to 4 weeks.17-20,55,56

Although the incidence of renal adverse events was not sig-
nificantly different from pamidronate or placebo in clinical
trials, retrospective analyses of patient safety data show a
nonnegligible incidence of renal toxicity with zoledronic acid
that has justified the current recommendations to adjust
zoledronic acid dose according to creatinine clearance.40,57,58

Because the link between histologic damage and clinical out-
come in patients is unclear (ie, minimal tubular damage
could remain undiagnosed), further examination through
kidney biopsy would help determine the extent and cause of
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any adverse renal effects. However, this is quite an aggressive
procedure likely to be performed only in patients developing
severe renal dysfunction. It is unknown whether monitoring
proteinuria, microalbuminuria, and/or the excretion of tubu-
lar renal enzymes could help predict and thus possibly avoid
future renal dysfunction.

Conclusion
Clinical evidence suggests that renal safety can compli-

cate I.V. bisphosphonate therapy for metastatic bone dis-
ease. Human data are sparse, but preclinical data show dif-
ferences between bisphosphonates in risk of histopatho-
logic renal damage and toxicity accumulation over time
(Table 1).4,34-36,41,42,53,54 In particular, preclinical find-
ings support empirical clinical observations suggesting
that zoledronic acid has a greater potential for renal toxicity
than ibandronate. This validates the recommendations that
zoledronic acid dosing should be adjusted according to creati-

nine clearance. Although the exact mechanisms responsible
for the differences in nephrotoxic potential are unclear, varia-
tions inherent in the renal structures affected by therapy and
pharmacokinetic properties of bisphosphonates, such as renal
tissue half-life and protein binding, might be contributing
factors. For this reason, additional preclinical studies are need-
ed in order to thoroughly investigate the renal effects of bis-
phosphonate therapy.
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